Analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms

Bibliographic Details
Main Author: Peralta Ángeles, Jorge Alberto
Other Authors: Reyes Esqueda, Jorge Alejandro (Asesor)
Format: Tesis de doctorado
Language:Inglés
Published: 2022
Subjects:
Online Access:https://hdl.handle.net/20.500.14330/TES01000826874
http://132.248.9.195/ptd2022/junio/0826874/Index.html
_version_ 1777515730287198209
author Peralta Ángeles, Jorge Alberto
author2 Reyes Esqueda, Jorge Alejandro
author2_role Asesor
author_facet Reyes Esqueda, Jorge Alejandro
Peralta Ángeles, Jorge Alberto
author_sort Peralta Ángeles, Jorge Alberto
collection DSpace
dc:degree.department Instituto de Física
dc:degree.department_facet Instituto de Física
dc:degree.grantor Universidad Nacional Autónoma de México
dc:degree.level Doctorado
dc:degree.name Doctorado en Ciencias (Física)
dc:degree.name_facet Doctorado en Ciencias (Física)
dc:rights http://creativecommons.org/licenses/by-nc-nd/4.0
Acceso en línea sin restricciones
format Tesis de doctorado
id 20.500.14330-TES01000826874
institution Universidad Nacional Autónoma de México
language Inglés
publishDate 2022
record_format dspace
spelling 20.500.14330-TES010008268742023-02-20T23:45:19Z Analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms Peralta Ángeles, Jorge Alberto Reyes Esqueda, Jorge Alejandro Ciencias Físico-Matemáticas e Ingenierías 2022 Tesis de doctorado publishedVersion https://hdl.handle.net/20.500.14330/TES01000826874 http://132.248.9.195/ptd2022/junio/0826874/Index.html eng http://creativecommons.org/licenses/by-nc-nd/4.0 Acceso en línea sin restricciones MX https://tesiunam.dgb.unam.mx/F?func=direct&current_base=TES01&doc_number=000826874 Doctorado en Ciencias (Física) Universidad Nacional Autónoma de México Instituto de Física Doctorado
spellingShingle Ciencias Físico-Matemáticas e Ingenierías
Peralta Ángeles, Jorge Alberto
Analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms
title Analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms
title_full Analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms
title_fullStr Analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms
title_full_unstemmed Analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms
title_short Analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms
title_sort analytically-supported optimal design of hybrid photonic-plasmonic crystals using machine learning algorithms
topic Ciencias Físico-Matemáticas e Ingenierías
url https://hdl.handle.net/20.500.14330/TES01000826874
http://132.248.9.195/ptd2022/junio/0826874/Index.html
work_keys_str_mv AT peraltaangelesjorgealberto analyticallysupportedoptimaldesignofhybridphotonicplasmoniccrystalsusingmachinelearningalgorithms